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Abstract

The cross-flow around wavy cylinders of wavelength ratios k/Dm from 1.136 to 3.333 are investigated at Re = 3000 using large eddy
simulation (LES). The mean flow field and the near wake flow structures are presented and compared with those of a circular cylinder at
the same Reynolds number. The mean pressure distributions are also calculated. The results show that the mean drag coefficients of the
wavy cylinders are less than those of a corresponding circular cylinder due to a longer wake vortex formation length generated by the
wavy cylinders. For a subcritical Reynolds number of 3000, a maximum drag coefficient reduction of up to 18% compared with a circular
cylinder is obtained corresponding to an optimal wavelength ratio of k/Dm around 1.9 and an amplitude ratio a/Dm of 0.152. The fluc-
tuating lift coefficients of the wavy cylinders are also greatly reduced or even suppressed. These kinds of wavy surfaces lead to the for-
mation of three-dimensional free shear layers which are more stable than purely two-dimensional free shear layers. Such free shear layers
will only roll up into mature vortices at further downstream positions. This significantly modified the near wake structures and the pres-
sure distribution around the cylinder. It was found that the wave amplitude to wavelength ratio a/k plays an essential role in determining
the 3D vortex structure behind the wavy cylinders which has a significant effect on the reduction of the fluctuating lift and suppression of
flow-induced vibration.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Flow around cylindrical bodies gives rise to many com-
plex flow phenomena at subcritical Reynolds numbers. The
alternate vortex shedding from these bluff bodies will pro-
duce very complicated flow effects such as causing vibra-
tion known as vortex induced vibration (VIV). Flow over
circular cylinders has been extensively investigated by
many researchers. How to control vortex shedding and
hence reduce the flow-induced vibration becomes a chal-
lenging problem in the fluid dynamics arena. One of the
methods to control vortex shedding is by adding some
objects on or near the cylinders. Another method is by
modifying the geometry of the cylindrical structures.
0142-727X/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.ijheatfluidflow.2008.01.006

* Corresponding author. Tel.: +852 2766 6649; fax: +852 2365 4703.
E-mail address: mmklam@polyu.edu.hk (K. Lam).
Three-dimensional free shear layers developed from these
kinds of cylinders will give rise to complex vortex struc-
tures which in turn leads to the reduction of lift and drag
forces and hence the suppression of vibration.

Based on the latter ideas of modifying the geometry of
the bluff bodies, Tomabzis and Bearman (1997) and Bear-
man and Owen (1998a,b) applied a spanwise wave defor-
mation to the trailing and leading face of a half-ellipse
shape body and a square cylinder, respectively. By modify-
ing the leading face of a square cylinder, the maximum
drag force reduction over 30% at the Reynolds number
about 40,000 was obtained. Later, Owen et al. (2000) stud-
ied flow past a sinuous cylinder by flow visualization
method. The Kármán vortex shedding was well suppressed
and a periodic variation in the wake width across the span-
wise direction was observed. Darekar and Sherwin
(2001a,b) numerically investigated the flow past a square
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cylinder with a wavy stagnation face at low Reynolds num-
bers. The steady nature of the near wake is associated with
a reduction in total drag of about 16% at a Reynolds num-
ber of 100 compared with the straight, non-wavy square
cylinder. Moreover, at higher Reynolds numbers, the drag
force reduction increases substantially.

Similar to the works mentioned above, another type of
cylinder whose diameter varies sinusoidally along its span-
wise direction, called a wavy cylinder, was introduced and
studied by the present investigators (see Fig. 1). It was
hoped that such a type of cylinder could lead to better con-
trol of the vortex shedding and hence the suppression of
flow-induced vibration of a cylindrical structure. Previ-
ously, experimental investigations on the surface-pressure
distributions of wavy cylinders with different spanwise
wavelengths have been carried out by Ahmed and Bays-
Muchmore (1992). They found that the separated flow
structures near the geometric nodes are distinctly asymmet-
ric for a large fraction of time and the sectional drag coef-
ficients at the geometric nodes are greater than these at the
geometric saddle. Ahmed et al. (1993) further investigated
experimentally the turbulent wake behind a wavy cylinder.
He described the topology of the boundary layer separa-
tion lines and the subsequent 3D development of the turbu-
lent structure of the wake. As a result, they found that the
formation of trailing streamwise vortices behind the nodal
points of separation gave rise to a locally narrower wake, a
rapid wake-velocity recovery and a suppression of the tur-
bulence development within the separated boundary layer.
But the drag reduction and suppression of vibration were
not discussed. Keser et al. (2001) used a 3D discrete vortex
method to simulate the separated flow around wavy cylin-
ders. Lam et al. (2004a) started to focus attention on effects
of different wavy cylinders on drag and lift reduction and
the related flow-induced vibration experimentally in the
range of subcritical Reynolds numbers from 20,000 to
50,000. They found that drag reduction of up to 20% could
be achieved by changing the geometric wavelength and
wave amplitude of the cylinder. It was also found that
the root-mean-square fluctuating lift coefficients of the
wavy cylinders are much lower than those of the circular
cylinders. Furthermore, Lam et al. (2004b) investigated
Fig. 1. Computational models: (a) schematic of the computational domain, (b
cylinder.
the near wake of a wavy cylinder using the Laser Doppler
Velocimetry (LDV) measurement. Compared to a circular
cylinder, the wavy geometry played an important role on
vortex formation length, drag reduction and vortex shed-
ding suppression. The vortex formation length of the wavy
cylinder is longer than that of the circular cylinder. In the
wake of the wavy cylinder, the rib structures were detected
near the saddle planes by using the laser-induced fluores-
cence (LIF) method at a Reynolds number of 600. This
gives rise to a longer formation length which has a strong
link with the effects of the drag force reduction. At the
nodal and saddle plane, the streamwise velocity distribu-
tions are very different compared with a circular cylinder.
Also the Reynolds stress is suppressed. On the other hand,
Nguyen and Jee (2004) investigated the near wake behind a
wavy cylinder by using hot-wire anemometer and flow visu-
alization. Drag reduction up to 22% at a Reynolds number
of 10,000 was obtained. They also showed that the longer
vortex formation region of the wavy cylinder seems to be
related to drag reduction. At the same Reynolds numbers,
the vortex formation length is longer and the turbulence
intensity is smaller than that of a circular cylinder.
Recently, Zhang et al. (2005) investigated the three-dimen-
sional near wake structures behind a wavy cylinder by
using particle image velocimetry (PIV) technique at a Rey-
nolds number of 3000. Along the span of a wavy cylinder,
well-organized streamwise vortices with alternating posi-
tive and negative vortices were observed. They suppress
the formation of the large-scale spanwise vortices and
decrease the overall turbulent kinetic energy in the near
wake of the wavy cylinder. In efforts of numerical simula-
tion, Lam and Lin (2006) also captured the detailed
three-dimensional vortex structures of three wavy cylinders
by using the large eddy simulations (LES).

All the investigations mentioned above have only been
studied over a small region of the wavelengths (1.0 < k/
Dm < 2.27) along the spanwise direction. The optimal value
of wavelength which can control the vortex formation is
still not known. Furthermore, the amplitude of the wavy
cylinder also plays an important role in the control of the
vortex structure from the wavy cylinders. Moreover, the
three-dimensional vortex structures can not be illustrated
) geometry of a wavy cylinder and (c) grid distributions around the wavy
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clearly using experimental methods especially at subcritical
Reynolds numbers. It is anticipated that numerical simula-
tions can well capture the instantaneous three-dimensional
vortex structures and other valuable data, such as drag, lift,
pressure, velocity and Reynolds stress, etc. For turbulent
flow, large eddy simulation method is becoming a very
popular CFD method. It is capable of simulating the com-
plex turbulent flows behind the cylinders. In the present
study, the three-dimensional wavy cylinders with different
wave geometrics are studied using the LES method. The
relationship between spanwise wavelength, wave ampli-
tude, and force coefficients are investigated. The optimal
wavelength is sought. The three-dimensional vortex struc-
tures are replicated; the pressure, velocity, separation
angle, and the Strouhal numbers are also calculated.

2. Computational models

2.1. Governing equations and the subgrid model

By using the three-dimensional LES turbulence model,
the large scale eddies are solved directly by the filtered
Navier–Stokes equations, and the small eddies are modeled
using a subgrid scale (SGS) model. The large-scale turbu-
lence motions are strongly dependent on the flow geometry
and boundary conditions, and they can be predicted by the
resolved flow in the LES method. On the other hand, the
subgrid scale model represents the small-scale eddy motion
which is more universal in character than the large scale
eddy. The filtering operation proceeds according to
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where D is the volume of a computational cell, and Gðx; x0Þ
is a filter function. Applying the filtering operation, the
incompressible Navier–Stokes equations for the evolution
of the large-scale motions are obtained. The governing
equations employed for LES are
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where �ui are the filtered velocity components along the
Cartesian coordinates xi, �p is the pressure, q is the fluid
density and m is the kinematic viscosity of the fluid. The
influence of the small scales on the large (resolved) scales
takes place through the subgrid scale stress defined by

sij ¼ uiuj � �ui�uj; ð5Þ

resulting from the filtering operation, which are unknown
and must be modeled with a subgrid model. The majority
of subgrid scale models are based on the eddy viscosity
models of the following form:
sij �
1

3
skkdij ¼ �2mtSij; ð6Þ

where the trace of the subgrid scale stresses skk is incorpo-
rated in the pressure resulting in a modified pressure term,
mt is the subgrid-scale kinematic viscosity, and Sij is the
strain rate tensor for the resolved scale defined by
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The most basic of subgrid scale models is proposed by
Smagorinsky (1963) and further developed by Lilly
(1966). In the Smagorinsky–Lilly model, the subgrid kine-
matic viscosity mt is modeled by

mt ¼ l2
s jSijj ð8Þ

where ls is the mixing length for the subgrid scales, and
jSijj �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

q
. ls can be computed using

ls ¼ minðky;CsD
1=3Þ ð9Þ

where k is the von Kármán constant (k = 0.42) and y is the
distance to the nearest wall. Cs is the Smagorinsky con-
stant, and D is the volume of the computational cell.

Lilly (1966) derived a value of 0.23 for Cs from homoge-
neous isotropic turbulence in the inertial subrange. How-
ever, this kind of large Cs value was found to cause
excessive damping of the large-scale fluctuations in the
presence of mean shear or in transitional flows, and small
values (Cs < 0.1) may cause convergence problems. For
many investigators, the Smagorinsky constant (Cs = 0.1–
0.14) has been found to yield good results for a wide range
of flows. All computations in the present work were carried
out with a Smagorinsky constant of Cs = 0.1, which is
found to be a suitable value for the applications of the
Smagorinsky model to turbulent wake simulation.

2.2. Numerical method

In the present simulation, the finite-volume method
(FVM) applied on unstructured grids is employed to calcu-
late the 3D unsteady incompressible Navier–Stokes equa-
tion. A second-order central differencing scheme is used
for momentum discretization while a second-order implicit
scheme is employed to advance the equations in time. The
well-known pressure implicit method with splitting of oper-
ators (PISO) algorithm is used to deal with the pressure–
velocity coupling between the momentum and the continu-
ity equations.

2.3. Computational domain and boundary conditions

The computational domain used for the simulations is
shown in Fig. 1a. The dimension of it is set at Lx � Ly � Lz

in the x, y, z directions of a fixed Cartesian coordinate sys-
tem (x,y,z). A wavy cylinder model is set inside it. The ori-
gin of the coordinate system is located at the end of the
wavy cylinder. The x-axis is aligned with the inlet flow
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direction (streamwise direction), the z-axis is parallel to the
cylinder axis (spanwise direction) and the y-axis is perpen-
dicular to both the x and z axes (crosswise direction). As
shown in Fig. 1b, the geometry of the wavy cylinders is
described by the equation, Dz ¼ Dm þ 2a cosð2pz=kÞ. Here,
Dz denotes the local diameter of the wavy cylinder and the
mean diameter is defined with Dm = (Dmin + Dmax)/2. Dmin

is the minimum diameter of cylinder along the span-
wise direction, while Dmax is the maximum diameter of
the wavy cylinder. The amplitude of the curve surface is
denoted by ‘a’, and ‘k’ is the wavelength along the spanwise
direction. The axial locations with maximum local diame-
ter are referred to as ‘‘nodes”, while the axial locations of
the minimum diameter are called ‘‘saddles”. The ‘‘middle”
is also defined at mid-point between the node and the
saddle.

In the present study, the different wavy cylinders are
investigated systematically. As shown in Table 1, there
are eleven wavy cylinder models with different combina-
tions of wave amplitude a/Dm and spanwise wavelength
k/Dm in the present simulations. By grouping the value of
a/Dm, equal to 0.091 and 0.152, these models are classified
into two groups which are named ‘‘WY-A” and ‘‘WY-B”,
respectively. In group ‘‘WY-A” (a/Dm = 0.091), there are
five wavy cylinder models (WY-A1, WY-A2, WY-A3,
WY-A4, WY-A5) each with different value of k/Dm =
1.136, 1.515, 1.894, 2.273 and 2.818, respectively, while
there are six models (WY-B1, WY-B2, WY-B3, WY-B4,
WY-B5, WY-B6) in group ‘‘WY-B” (a/Dm = 0.152) and
each with different value of k/Dm = 1.136, 1.515, 1.894,
2.273, 2.818 and 3.333, respectively. All the wavy cylinder
cases are simulated and compared with corresponding cir-
cular cylinders under the same simulation conditions.

In solving the governing equations, the different physical
quantities are changed to a nondimensional form, i.e., all
the variables are normalized. All geometrical lengths are
scaled with Dm. In the present simulations, taking the
examples of the computational domain adopted by previ-
ously investigations for flow pass bluff bodies at subcritical
Reynolds numbers using the LES method, for example
Lx � Ly � Lz = 23.2 � 15.7 � 4 by Sohankar et al. (2000),
and Lx � Ly � Lz = 18.8 � 10 � p by Liang and Papadakis
Table 1
Computational models parameters for different wavy cylinders

Wavy models k/Dm a/Dm Lx � Ly � Lz (Dm) Grid

WY-A1 1.136 0.091 24 � 16 � 4.55 16,000 � 80
WY-A2 1.515 0.091 24 � 16 � 4.55 16,000 � 80
WY-A3 1.894 0.091 24 � 16 � 3.79 16,000 � 64
WY-A4 2.273 0.091 24 � 16 � 4.55 16,000 � 80
WY-A5 2.818 0.091 24 � 16 � 2.82 16,000 � 48

WY-B1 1.136 0.152 24 � 16 � 4.55 16,000 � 80
WY-B2 1.515 0.152 24 � 16 � 4.55 16,000 � 80
WY-B3 1.894 0.152 24 � 16 � 3.79 16,000 � 64
WY-B4 2.273 0.152 24 � 16 � 4.55 16,000 � 80
WY-B5 2.818 0.152 24 � 16 � 2.82 16,000 � 48
WY-B6 3.333 0.152 24 � 16 � 3.33 16,000 � 64
(2007), in the streamwise and crosswise directions (see
Fig. 1a), the computational boundaries Lx and Ly are set
at 24Dm and 16Dm, respectively. The upstream boundary
is set at 8Dm away from the centerline of wavy cylinder.
The downstream boundary is 16Dm away from the wavy
cylinder. The experimental studies of Williamson et al.
(1995) and Williamson (1996) showed that the wavelength
of the streamwise vortex structures in the near wake of a
circular cylinder scales is given by kz=Dm � 25Re�1=2. Here,
kz is the spanwise wavelength of the vortices and the Rey-
nolds number based on the mean diameter of wavy cylinder
is fixed at Re ¼ DmU1=m ¼ 3000 for all the cases studied.
So the estimated near wake wavelength of streamwise vor-
tices for the circular cylinder is around0:5Dm. Further
downstream, the large scale structures for streamwise vor-
tices with wavelengths kz=Dm � 1 have been reported (Wil-
liamson (1996)). Considering the resolution of the large
scale eddies, we use Lz at the range of 2.82Dm to 4.55Dm

in the spanwise direction which will be sufficient for the
present simulations for the circular cylinder (see Table 2).
As mentioned by Lam et al. (2004b) and Zhang et al.
(2005), the periodic repeated vortex structures were
observed to be consistent with the periodic repetition of
the wavy cylinder spanwise wavelength k. In the present
simulation, the spanwise domain Lz of the wavy cylinders
are set equal to the same range as that of the circular cyl-
inders (2.82–4.55Dm) in the spanwise direction. In order
to save computation time, spanwise domain length to
wavelength ratios (Lz=k) of 4, 3, 2 and 1 are employed as
k=Dm increases from 1.136 to 3.333 (see Table 1).

The computational domain is divided into a number of
unstructured hexahedral grids. Fig. 1c shows that the grid
is nonuniform on the x–y plane but uniform along the z-
direction. The grid is clustered near the cylinder and the
spacing is increased in a proper ratio away from the cylin-
der. The distance from the cylinder surface to the nearest
grid points are fixed at y+ close to 1. At the inlet boundary,
a uniform velocity profile (u = 1, v=w = 0) is imposed,
while the convective boundary condition (oui=otþ
U cðoui=oxÞ ¼ 0) is used at the outlet boundary (Breuer,
1998; Sohankar et al., 2000), where Uc is the convection
velocity equal to the mean velocity at the inlet. A periodic
boundary condition is employed at the boundaries in the
spanwise direction and a no-slip boundary condition
(u = v = w = 0) is prescribed at the surface of the wavy cyl-
inders. The lateral surfaces are treated as slip surfaces using
symmetry conditions (ou=oy ¼ ow=oy ¼ v ¼ 0).

2.4. Grid independence and the validation of numerical

models

The accuracy of the computational results using LES is
highly dependent on the mesh size and cell numbers. The
grid test calculations must be carried out first. Table 2
shows that seven circular cylinder models are constructed
for LES simulation and the results are compared with
experimental and other numerical results of circular cylin-



Table 2
Grid independence test for a circular cylinder at Re = 3000

Circular cylinder Re �CD C0L St

Norberg (1987) (experimental) 3000 0.98�1.03 N/A 0.210�0.213
Norberg (2003) (summarized) 3000 (3900) N/A 0.05, 0.07 (0.07, 0.3) 0.210 (0.208)
Lu et al. (1997) (experimental) 3000 1.02 N/A N/A
Lu et al. (1997) (LES) 3D 3000 1.07 0.48 N/A

Present cases Lx � Ly � Lz (Dm) Grid �CD C0L St

Coarse-grid 1 (LES) 3D 24 � 16 � 4.55 10,900 � 64 1.21 0.385 0.207
Coarse-grid 2 (LES) 3D 24 � 16 � 4.55 13,620 � 64 1.11 0.221 0.209
Fine-grid 1 (LES) 3D 24 � 16 � 2.82 16,000 � 48 1.08 0.188 0.210
Fine-grid 2 (LES) 3D 24 � 16 � 3.33 16,000 � 64 1.10 0.195 0.211
Fine-grid 3 (LES) 3D 24 � 16 � 4.55 16,000 � 64 1.09 0.174 0.210
Fine-grid 4 (LES) 3D 24 � 16 � 4.55 16,000 � 80 1.09 0.177 0.210
Fine-grid 5 (LES) 3D 24 � 16 � 4.55 21,200 � 80 1.08 0.183 0.211
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ders at Re = 3000. The grid independence inspection for
the three-dimensional flow simulations was carried out
prior to extensive numerical simulation. For these seven
cases, the mesh numbers set to 120, 144, 160 and 200
around the cylinder circumference corresponding to the
cells in x–y plane are from 10,900, 13,620, 16,000 and
21,200, respectively. Uniform layer from 48 to 80 are used
along the z-direction. The mean drag coefficients of the cir-
cular cylinders (�CD) in our simulations (Fine-grid 1–5) are
in good agreement with the 3D LES results taken from Lu
et al. (1997), and slightly larger than those of the experi-
mental data (Norberg, 1987; Lu et al., 1997). The fluctuat-
ing lift coefficients (C0L) of the present circular cylinder
cases are around the value of 0.18 at Re = 3000 which
are slightly larger than the experimental results summa-
rized by Norberg (2003) (C0L = 0.05 or 0.07, Re = 3000,
and C0L = 0.07, Re = 3900). However, the values are smal-
ler than those 3D simulation results C0L = 0.48 at
Re = 3000 by Lu et al. (1997) and C0L = 0.3 at Re = 3900
summarized by Norberg (2003). Due to the great spread
in the value of C0L obtained by different investigators, the
present result of fluctuating lift coefficient C0L is also within
such range and is considered to be acceptable. The Strou-
hal numbers (St ¼ fsDm=U1) of the present results also
agree with the experimental measurements. Here, fs is the
vortex shedding frequency. With different grid numbers,
grid independence tests are satisfied considering the varia-
tion of the values of �CD, C0L and St except for the models
of Coarse-grid 1 and 2. For the wavy cylinders, the grid
Table 3
Grid independence test for a wavy cylinder (WY-A4) and the periodic bound

Wavy cylinder Model Lx � Ly � Lz (Dm)

Coarse-grid 1 (LES) 3D WY-A4 24 � 16 � 4.55
Coarse-grid 2 (LES) 3D WY-A4 24 � 16 � 4.55
Fine-grid 4 (LES) 3D (i) WY-A4 24 � 16 � 4.55
Fine-grid 4 (LES) 3D (ii) WY-A4 24 � 16 � 4.55
Fine-grid 5 (LES) 3D WY-A4 24 � 16 � 4.55

Fine-grid 2 (LES) 3D (i) WY-B6 24 � 16 � 3.33
Fine-grid 2 (LES) 3D (ii) WY-B6 24 � 16 � 6.66
independence tests (Table 3) are also performed. A typical
wavy cylinder model WY-A4 (a/Dm = 0.091, k/Dm =
2.273) with four different grid numbers (coarse-grid models
1, 2 and Fine-grid models 4 and 5) is calculated apart from
the calculations of the circular cylinder cases with the same
grid number. As shown in Table 3, there are only very little
difference on the values of �CD, C0L and St for the wavy cyl-
inder models of Fine-grid 4 and 5 compared with the mod-
els of the coarse-grid 1 and 2. This is similar to the
conclusion for circular cylinder tests discussed above.
Other tests for the effect of grid refinement will be discussed
in Section 3.1 (see Figs. 2–4).

To ensure better results and capture detailed vortex
structures, the finer grid number of 16,000 in the x–y plane
is adopted for all the simulations of the present wavy and
circular cylinder cases. On the other hand, the uniform lay-
ers from 48 to 80 are used along the cylinder spanwise
direction. A nondimensional time step DtU1=Dm ¼ 0:02
was chosen for the simulation, yielding the maximum
CFL number close to 2 and ensured sufficiently small
CFL numbers less than 1 for most part of the computa-
tional domain. It was dictated by the numerical stability
of the computations. A smaller time step DtU1=Dm ¼
0:005 was also tested for comparison, and the differences
between the two time step cases were found to be very small
(see Table 3, the cases of Fine-grid 4 (i) and (ii)). Also, as
mentioned above, the spanwise lengths Lz of the wavy cyl-
inders in the computational domain are 1–4 wavelengths.
For the wavy cylinder models with only one wavelength
ary condition validation test by a wavy cylinder (WY-B6) at Re = 3000

Grid DtU1=Dm
�CD C0L St

10,900 � 64 0.02 1.09 0.178 0.206
13,620 � 64 0.02 1.00 0.052 0.206
16,000 � 80 0.02 0.99 0.039 0.207
16,000 � 80 0.005 0.99 0.044 0.209
21,200 � 80 0.02 0.99 0.043 0.208

16,000 � 64 0.02 1.01 0.061 0.210
16,000 � 128 0.02 1.01 0.063 0.210



Fig. 2. Vortex structures of a circular cylinder and a wavy cylinder (WY-A4) by LES method (upper) compared with experimental results (lower). (a)–(c)
present LES method at Re = 3000; (d) LIF result at Re = 3000 taken from Dalton and Xu (2001); (e) and (f) LIF results at Re = 2000 taken from Lam
et al. (2004).
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domain in the spanwise direction, the validation of the
periodic boundary condition are also carried out by choos-
ing a typical wavy cylinder model WY-B6 which has the
largest value of spanwise wavelength k/Dm = 3.333 in the
present simulations and with a/Dm = 0.152. As shown in
Table 3, the values of �CD, C0L and St are basically the same
by using one or two wavelength domain length in the span-
wise direction. Therefore, it can be seen that even one
wavelength of spanwise domain length can be sufficient
for the present simulations. Moreover, other tests of the
validation of the periodic boundary condition on the vor-
tex structures and force time histories will be discussed later
(see Figs. 14 and 15). For all of the present simulations, at
least 150 dimensionless time units (tU1=Dm), which corre-
sponded to about 30 vortex-shedding cycles, were taken so
as to obtain more reliable statistical information. The
overall drag coefficient is defined by CD ¼ CDp þ CDf ¼
2F D=qU 2

1DmLz:Also, the overall lift coefficient is
CL ¼ CLp þ CLf ¼ 2F L=qU 2

1DmLz. The total drag force
and total lift force are given by F D and F L. The pressure
drag and pressure lift coefficients are CDp and CLp, respec-
tively. Moreover, CDf and CLf are the skin friction drag and
lift forces, respectively which normally contribute a very
small percentage of the total force for bluff bodies at high
Re. The total drag (and lift) is the sum of friction and pres-
sure drag (and lift) calculations.

3. Results and discussion

3.1. The flow patterns and velocity distributions

Firstly, a wavy cylinder model WY-A4 (Fine-grid 4),
with the same combination of amplitude and wavelength
ratio of a/Dm = 0.091 and k/Dm = 2.273 investigated
experimentally by Lam et al. (2004b), is investigated at
Re = 3000. Moreover, a circular cylinder model (Fine-grid
4) is also simulated. The vortex structures of these two dif-
ferent cylinders obtained by an LES model are compared
with the laser-induced fluorescence (LIF) results as shown
in Fig. 2. It can be clearly seen that, in the present simula-
tion, the near wake formation of a circular cylinder is in
good qualitative agreement with the experimental vortex
structures at Re = 3000 by Dalton and Xu (2001). The
wakes of the wavy cylinder at the nodal and saddle plane
are also similar to the LIF results by Lam et al. (2004b)
at Re = 2000.

Fig. 3 shows the comparison of the LES results of the
mean streamwise velocity U=U1 and fluctuating stream-
wise velocity u0=U1 distributions of the wavy (WY-A4)
and circular cylinders with the experimental measurements
by a Laser Doppler Anemometry (LDA) method (refer to
the wavy and circular cylinder cases with different grid
numbers indicated in Tables 2 and 3). For the Coarse-grid
models 1 and 2, the LES results of U=U1 and u0=U1 show
a larger discrepancy with that of the LDA results (Norberg,
1998; Lam et al., 2004b and present LDA measurements),
especially for the curves with the Coarse-grid model 1.
However, only very little discrepancy can be observed
between the LES results and experimental results when
adopting the Fine-grid model 4 and Fine-grid model 5 grid
sizes for both the circular and wavy cylinders. As shown in
Fig. 3, for the circular cylinder, the LES results of the dis-
tributions of U=U1 and u0=U1 agree very well with that of
the experimental results. This is also the same for the wavy
cylinder (WY-A4) at nodal planes. However, in saddle
planes at the position of x/Dm = 3, an obvious discrepancy
of the values of U=U1 can be observed from the present
LES results and the LDA measurements by Lam et al.
(2004b). Considering the discussions by Lam et al.
(2004b), the end point of the reverse flow position (the
velocity recovery point) in the wake centerline behind the
wavy cylinder (WY-A4) at Re = 3000 is at around the posi-
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tion of x/Dm = 3. That means, x/Dm = 3 is highly position
sensitive region for the streamwise velocity distributions at
such subcritical Reynolds number. A slight error in posi-
tion may have a very different of the velocity profile. In
general, it can be concluded that the results of the distribu-
tions of U=U1 and u0=U1 agree very well with that of the
experimental results if the fine-grid models are employed.

Fig. 4 presents the nondimensional mean spanwise
velocity W =U1 near the edge of the immediate near-wake
(y/Dm = 1; x/Dm = 1, 1.5 and 2). Similar to the observa-
tions by Lam et al. (2004b), the spanwise velocity compo-
nent of the wavy cylinder WY-A4 is zero at both the
nodal and saddle plane. The significant spanwise flow goes
from the saddle plane to the nodal plane. This kind of
spanwise velocity distributions well illustrates that there
is a high degree of three-dimensionality in the wake flow.
Moreover, adopting the Fine-grid models 4 and 5, the
LES results of W =U1 are very consistent with those
LDA results by Lam et al. (2004b). All the comparisons
above show that the present LES simulations can success-
fully predict the velocity distributions of the turbulent
wake at different x/Dm and y/Dm values. Therefore, all
these results gave us reasonable confidence on the applica-
tion of LES model to capture and study the complex turbu-
lent flow characteristics around wavy cylinders.
3.2. Force and Strouhal numbers of wavy cylinders

One of the major objectives of present investigation is to
find an optimal range of wave geometries characterized by
the different combinations of a/Dm and k/Dm, which can
well control the vortex structures of the wavy cylinders
and hence reduce the mean drag and fluctuating lift.
Fig. 5 shows that the mean drag coefficients �CD and fluctu-
ating lift coefficients C0L for different wavy cylinders models
together with the mean values of a corresponding circular
cylinder at Re = 3000. All the values of mean drag coeffi-
cients and fluctuating lift coefficients of the wavy cylinders
are smaller than that of the circular cylinder. From the
graphs in Fig. 5a and b, we can see that both corresponding
values of the mean drag coefficients and fluctuating lift
coefficients of wavy cylinders in group ‘‘WY-A” (a/
Dm = 0.091) and in group ‘‘WY-B” (a/Dm = 0.152) are sig-
nificantly reduced for the same value of nondimensional
spanwise wavelength k/Dm, especially for the wavy cylin-
ders in group ‘‘WY-B”. This is in consistent with the results
obtained by Darekar and Sherwin (2001a). It can be con-
cluded that by increasing in the amplitude of the wavy cyl-
inder a/Dm, both the drag and lift fluctuation of wavy
cylinder are reduced. Normally, a larger value of a/Dm will
give a larger reduction of both the drag and suppression of
the fluctuating lift.

Unlike the effect of a/Dm, the mean drag coefficient �CD

of the wavy cylinders drops to a minimum at a certain
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k/Dm and increases again as k/Dm increases. As shown in
Fig. 5a, in the range of k/Dm = 1.136–1.894, the mean drag
force coefficients of the wavy cylinder are reduced quickly
and the fluctuating lift force coefficients are also suppressed
remarkably. Compared with a circular cylinder, the drag
coefficient reduction up to 18% is obtained for the wavy
cylinder model ‘‘WY-B3” (a/Dm = 0.152, k/Dm = 1.894)
at Re = 3000. For constant values of a/Dm, Lam et al.
(2004a) found that with the value of k/Dm = 1.5, a bigger
reduction of drag can be obtained compared to that of k/
Dm = 2.3 for Reynolds numbers range from 20,000 to
50,000. It seems that a large value of wave steepness (a/k)
can further reduce drag. However, other experimental
results by Nguyen and Jee (2004) showed that, with the val-
ues of k/Dm = 2, wavy cylinders can get more drag reduc-
tions than that of k/Dm = 1 at a wide range of Re from
5300 to 50,000. A maximum drag reduction up to 22%
was obtained at k/Dm = 2 and Re = 10,000. If the values
of wave steepness (a/k) are related with the drag reduction,
the above two experimental results will be conflicting. The
present LES results show that the above two experimental
results are in fact not contradicting with each other. The
disparity is due to the fact that the previous experimental
investigations for the effect of k/Dm were only performed
in a small range and do not wholly reveal the effect of k/
Dm and a/Dm. With the present numerical simulation using
the LES method to investigating flow around different
wavy cylinders, it is relatively convenient to study a wide
range of the combinations of k/Dm and a/Dm, hence the
significance of k/Dm, a/Dm and a/k can be better under-
stood. Combined with the previous experimental data
and our LES results, the optimal value of wavelength ratio
for turbulent flow should be around k/Dm = 1.9 with a
large value of a/Dm. Regarding the fluctuating lift coeffi-
cient of the wavy cylinders, it can be seen that the values
of C0L in the wavy cylinder group ‘‘WY-B” (a/Dm =
0.152) are much smaller than others in the range of k/Dm

from 1.14 to 2.27. A maximum reduction of the fluctuating
lift coefficient up to 94% is obtained at a/Dm = 0.152 and k/
Dm = 1.515. Although the value of k/Dm = 1.14 is already
not in the optimal range, the fluctuating lift coefficients are
still significantly suppressed. As we have discussed above,
the values of wave steepness (a/k) are not directly related
to the magnitude of drag reduction, but it may significantly
control the vortex structures and hence suppress the fluctu-
ating lift force (see Fig. 5b).

Fig. 5c shows that, the Strouhal numbers (St) of the
wavy cylinders are all around 0.21, similar to that of the
circular cylinder at the same Reynolds number of 3000.
Only in the wavy model group ‘‘WY-B”, the Strouhal num-
bers are slightly lower than that of the circular cylinders at
the range of k/Dm from 1.5 to 2. It can be concluded that
the variation in surface geometry has little or no effect on
the frequency of vortex shedding for the wavy cylinders.
The Strouhal numbers of the three types of wavy cylinders
measured by Lam et al. (2004a) also showed that the wave
shape has little effect on vortex shedding of wavy cylinders
at Re from 5000 to 60,000.

3.3. Vortex formation length and turbulence intensity

It is important to quantify the vortex formation length
behind the cylinder because such length will affect the wake
pressure and hence the force coefficient of the cylinder. The
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vortex formation lengths for various spanwise positions
behind the wavy cylinders are shown in Fig. 6. The defini-
tions of the length of vortex formation vary with different
researchers. For example, Bloor (1966) defined the forma-
tion length as the point where low frequency irregularities
suddenly decrease in intensity; Gerrard (1978) defined it
as the point where the irrotational flow crossed the wake
centerline behind the bodies and Norberg (1998) and
Govardhan and Williamson (2001) defined the vortex for-
mation length as the point on the wake centerline where
the streamwise Reynolds normal stress reaches a maxi-
mum. Finally, the location of the time-averaged closure
point on the wake centerline (U=U1 ¼ 0) has been used
to define the vortex formation length (Lam et al.
(2004b)). In the present study, the normalized mean
streamwise velocity U=U1 and normalized r.m.s. values
of the fluctuating streamwise velocity (u0=U1) along the
wake centerline (y = 0 plane) of the circular and wavy cyl-
inders at the Reynolds number of 3000 are obtained. The
wake closure length (Lfc) corresponding to U=U1 = 0
and the maximum turbulence intensity length (Lfu) where
the turbulence intensity u0=U1 reaches a maximum along
the wake centerline, are all calculated for different spanwise
positions from node to saddle.

Fig. 6 shows the vortex formation lengths of four typical
wavy cylinder models (WY-A2, WY-A4, WY-B2 and WY-
B4) comparing with that of a circular cylinder at
Re = 3000. Refer to Table 1, the wavy cylinder models
WY-A2 and WY-B2 have the same wavelength ratio (k/
Dm = 1.515) but only distinguished by the value of a/Dm.
Also, WY-A4 and WY-B4 have the same value of k/
Dm = 2.273. For all the cases of the wavy cylinders, the
vortex formation lengths are evidently longer than that of
the circular cylinder. Along the spanwise direction of wavy
cylinders, the lengths of the vortex formation regions at the
nodal planes are shorter than that of the saddle plane. The
vortex formation length shows a large variation from the
node to saddle for a/Dm = 0.152. In general, it increases
from the nodal plane to saddle plane for all the wavy cyl-
inders. Similar results were also found in experimental
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measurements by Lam et al. (2004b) and Nguyen and Jee
(2004).

Considering the base pressure of the different values of
a/Dm and k/Dm, shown in Fig. 7, the vortex formation
lengths of wavy cylinders for group ‘‘WY-B” (a/
Dm = 0.152) are longer than that for group ‘‘WY-A” (a/
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can provide more reduction of the drag coefficient and an
even greater suppression in the fluctuating lift coefficient.
Also Bearman (1965) gave an expression for the formation
length of circular cylinder Lfc=C/ (-�Cpb). The value of C is
in the range of 1.6–1.8 for the Reynolds range from 1000 to
9000. In present simulation, the formation length of circu-
lar cylinder using the Bearman (1965) expression is found
to be have a value of C = 1.86 at Re = 3000, while, for
the wavy cylinder, the value of C is in the range of 2.1–
2.3 at Re = 3000. Based on the results of the relationship
between the drag force and the average formation length
above, we obtained a maximum drag force reduction of
19% which is in good agreement with our simulation results
of drag force reduction up to 18% as shown in Fig. 5a. So
we concluded that the average vortex formation lengths of
wavy cylinders are also inversely proportional to the mean
drag coefficient �CD at the subcritical Reynolds numbers.
Comparing the vortex formation length within the same
group, it can be found that in group ‘‘WY-A” the forma-
tion lengths of WY-A2 are longer than WY-A4 in
Fig. 6a. While the difference of formation lengths between
1 1.5 2 2.5 3 3.5

60

80

100

120

140
Circular cylinder
WY-A (a/Dm=0.091)-Node

WY-B (a/Dm=0.152)-Node

mD/λ

se
p

(d
eg

)

WY-B (a/Dm=0.152)-Middle
WY-B (a/Dm=0.152)-Saddle

WY-A (a/Dm=0.091)-Saddle
WY-A (a/Dm=0.091)-Middle

Fig. 9. Separation angles for wavy cylinders compared with that of a
circular cylinder at Re = 3000.

Fig. 10. Surface streamlines and the topology of the three-dime
WY B2 and WY B4 in group ‘‘WY B” is not very clearly
distinguished. It seems that the effect of k/Dm on the vortex
formation lengths will be reduced with the increase of a/
Dm.

Furthermore, the maximum turbulence intensity length
(Lfu) where u0=U1 reaches a maximum along the wake cen-
terline and the values of maximum u0=U1 along the wake
centerline are also plotted in Fig. 6b and c. Comparing
the values of Lfu in the same group, it can be found that
in group ‘‘WY-A” the maximum turbulence intensity
length changes only slightly with different values of k/Dm,
while the values of Lfu of WY-B2 are larger than that of
WY-B4 as shown in Fig. 6b. So we can also infer that
the effect of k/Dm on Lfu will increase with the increase
of a/Dm. Furthermore, as shown in Fig. 6c, a larger value
of a/Dm will give rise to larger reduction of turbulence
intensity u0=U1. From node to saddle, the maximum tur-
bulence intensity length (Lfu) of wavy cylinders increases,
while the value of u0=U1 decreases. In general, the values
of turbulence intensity are all smaller than that of a circular
cylinder. A longer turbulence intensity length and lower
values of turbulence intensity would have obvious advan-
tage on the minimization of fluctuating lift.
3.4. Pressure coefficients distributions

The drag reduction can also be understood by plotting
the circumferential pressure distributions of wavy cylin-
ders. The mean circumferential pressure coefficient �Cp dis-
tributions of the wavy cylinders at different sections (node,
middle, and saddle) are shown in Fig. 7. The corresponding
circular cylinder at a Reynolds number of 3000 is also
included for comparison. The lowest pressure coefficient
points (the position of maximum negative pressure coeffi-
cients point) on the circular and wavy cylinders surface in
present investigation are obtained. From Fig. 7, it can be
seen that the lowest pressure coefficient point on the wavy
cylinder varies in different cross sections. This means the
separation at the saddle plane is much earlier than that
nsional separation lines for the wavy and circular cylinders.
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at the nodal plane for all wavy cylinders. It is also similar
to the experimental results obtained by Ahmed and Bays-
Muchmore (1992) and Lam et al. (2004a) In the range of
smaller values of wavelength (k/Dm < 2), the maximum
negative pressure coefficients for the nodal planes are smal-
ler than that at the middle and saddle planes. With the
increase of k/Dm, the difference of maximum negative pres-
sure coefficients between node and saddle decreases. Espe-
cially for WY-B6 (k/Dm = 3.333, a/Dm = 0.152), the
maximum negative pressure coefficient at node is larger
than that at a saddle which is very different with other
models. But all the maximum negative pressure coefficients
of the wavy cylinders in Fig. 7 are smaller than the corre-
sponding circular cylinder. Also, we can observe that, with
the increase of k/Dm, the positions of lowest pressure coef-
ficient points at different cross-sections are getting closer to
the position of circular cylinders (71�) by the present LES
method at Re = 3000. This also agrees with the value sum-
marized by Norberg (2002). In wavy cylinder model group
‘‘WY-A” (a/Dm = 0.091), the lowest pressure positions
seem closer to that of circular cylinders than in group
‘‘WY-B” (a/Dm = 0.152). That means a large value of a/
Dm with a small value of k/Dm can make a small value of
lowest pressure position at a saddle plane and a large value
of lowest pressure positions at a nodal plane. However, at
the middle plane, the lowest pressure positions are still
around the value of 71� (the position of lowest pressure
coefficient points of a circular cylinder at Re = 3000). This
kind of wavy variation of lowest pressure position for a
wavy cylinder along the spanwise direction may lead to
the flow separation line change from a straight line to a
wavy line as well. Also the pressure distribution indicates
Fig. 11. Normalized x–y components turbulent kinetic energy (TKE) distribut
that of a circular cylinder in the x–y plane.
that the pressure drop is more rapid and the separation is
earlier at the saddle plane than those at other spanwise
locations for wavy cylinders.

Furthermore, the variations of mean pressure coefficient
along the spanwise direction at various angular locations
(h = 0�, 20�, 30�, 40�, 50�, 60�, 70�, 80�, 90� and 180�) are
shown in Fig. 8. It can be found that �Cp at the stagnation
points (0�) of nodal and saddle planes are about 1.0 for all
wavy cylinders and are equal to that of the circular cylin-
der, while at other spanwise locations �Cp is less than 1.0.
The minimum values of �Cp are located midway between
the nodal and saddle planes of the wavy cylinders. Increas-
ing the angular location, the minimum values of �Cp are
moved from the midway to the saddle plane (angular loca-
tion > 20�) and the maximum values is still at the nodal
planes. The maximum difference of �Cp between nodal and
saddle planes is found at h = 40� for all the wavy cylinders.
Further increasing the angular location, in the pressure
recovery region behind the wavy cylinders (h = 70–180�),
the minimum values of �Cp change to the nodal planes while
the maximum values are at saddle planes except the case of
WY-B6 at h = 180�. All these characteristics are very differ-
ent with that of the circular cylinder where �Cp is constant
along the spanwise direction. It may give rise to the
three-dimensional effect for the near wake of the wavy
cylinders.

From node to saddle, the variation pressure coefficients
in the spanwise direction are more prominent in group
‘‘WY-B” than that in group ‘‘WY-A”. That means a large
value of wave amplitude a/Dm can lead to a large spanwise
variation of the pressure distributions. Also shown in
Fig. 8, the mean base pressure coefficients �Cpb (h = 180�)
ions at nodal, middle and saddle planes for wavy cylinders compared with
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of the wavy cylinders and the circular cylinder are
obtained. And a larger value of a/Dm can lead to a larger
value of base pressure coefficient which give rise to more
drag force reduction. The mean base pressure coefficient
�Cpb changed from the nodal plane to the saddle plane
and the �Cpb value of nodal and saddle plane is slightly dif-
ferent especially for the models with large value of wave-
length k/Dm (WY-A4, WY-A5, WY-B4, WY-B5 and
WY-B6). The base pressure coefficient distributes symmet-
rically with respect to saddle planes for smaller wavelength
(k/Dm < 1.515). Furthermore there are two peaks located
symmetrically around the saddle plane of the model WY-
B6 and the distance between these two peak is
0.55k = 1.83Dm (k = 3.333Dm). Also comparing with a cir-
cular cylinder, the �Cpb values are all smaller and have
important relationship with the vortex formation length
and drag force as we discussed before.
Fig. 12. Normalized x–z components turbulent kinetic energy (TKE)
distributions at y/Dm = 0 for wavy and circular cylinders in the x–z plane.
3.5. Separation angles of wavy cylinders

The vortex shedding phenomenon is associated with
flow separation from the boundary layer of bluff bodies.
The flow separation points are referred to as the points
on the surface of bluff bodies where the shear stress van-
ishes. Since the stability of the free shear layer and the
resulting vortex structure are highly dependent on the sep-
aration point of the wavy cylinder, the flow separation
angles (hsep) for both wavy and circular cylinders are
obtained. As shown in Fig. 9, the flow separation angles
in different cross sectional planes (nodal, middle and sad-
dle) of wavy cylinders are plotted for Re = 3000.

With increase of the value of k/Dm, the separation
angles of the nodal plane reduce sharply at the range of
k/Dm from 1 to 1.5, while the reduction becomes smaller
when the value of k/Dm is larger than 1.5. At the nodal
plane, the separation angle hsep = 140� for group ‘‘WY-
B” (a/Dm = 0.152) is much larger than that of circular cyl-
inders (hsep = 88�). At the middle plane of wavy cylinders,
the separation angles decreases slightly and still around the
separation angle value of the circular cylinder at the same
Reynolds number. At k/Dm < 2, the value of separation
angle is larger than that of circular cylinder while becomes
smaller when k/Dm > 2. Furthermore, at the saddle plane,
the separation angle increases with the increase of k/Dm.
Here, all the values of separation angles are smaller than
that of circular cylinders. Considering the effect of a/Dm,
with a large value of a/Dm in group (WY-B, a/Dm =
0.152) the trance above becomes clear. That is to say, the
wave steepness value a/k plays an important role in separa-
tion point determination. Furthermore, there is some
relationship between the separation angle and three-dimen-
sional vortex structures. Lam et al. (2004b) pointed out the
significant spanwise flow motion moving from the saddle
plane toward the nodal plane, and depicted surface stream-
lines near the separation line similar to what is shown in
Fig. 10 in the present simulation. Fig. 4 also confirmed this
kind of 3D flow characteristic. Moreover, a large value of
wave steepness a/k may enhance this 3D characteristic.
3.6. Turbulent kinetic energy

Fig. 11 shows the contour plots of the normalized turbu-
lent kinetic energy (TKE) in the x–y planes
[TKE = (u’2 + v’2 + w’2)/2U1

2] of the wake behind the
wavy cylinders [WY-A3 (a/Dm = 0.091, k/Dm = 1.894)
and WY-B3 (a/Dm = 0.152, k/Dm = 1.894)] and a circular
cylinder at Re = 3000. Both the TKE in nodal, middle
and saddle planes are plotted for comparison. Compared
with the circular cylinder, the region of negligible kinetic
energy is noticeably larger behind the wavy cylinder than
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that of a circular cylinder, especially for the wavy cylinder
WY-B3 with a large value of a/Dm. The maximum TKE
values and the high TKE values regime in the nodal plane
are larger than that of the middle and saddle planes. These
features are consistent with the elongation of the vortex
formation length and the lower turbulence intensity men-
tioned above and shown in Fig. 6. However, all the TKE
values for different cross-section planes of the wavy cylin-
ders are smaller than that of the circular cylinder. More-
Fig. 13. Normalized y–z components turbulent kinetic energy distribution
over, the positions of maximum TKE are farther away
from the back of the wavy cylinder than that of the circular
cylinder. Therefore, the overall TKE of the flow behind the
wavy cylinder is lower than that of the circular cylinder at
Re = 3000. It suggests that a wavy geometry can signifi-
cantly reduce the TKE in the near wake.

In the x–z plane with y/Dm = 0, as shown in Fig. 12, the
maximum TKE regime behind the circular cylinder is at
around the position x/Dm = 2, and the values of TKE
s at x/Dm = 2 and 4 for wavy and circular cylinders in the y–z plane.
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are uniform along the spanwise direction, while in the flow
behind a wavy cylinder (WY-A3), at the downstream loca-
tion of approximately x/Dm = 2.5, The TKE exhibits local
maxima behind the nodes (see Fig. 12b). This is possibly
due to the converging flow of the free shear layer from
the saddle to the node (the significant spanwise flow goes
from the saddle plane) and additional transport of kinetic
energy near the node by the streamwise vortices. In the
regimes behind the saddles of the wavy cylinder, the values
of TKE are smaller than that behind the nodes, and lesser
variation along the streamwise direction can be observed
than those behind the nodes. In generally, the spanwise
variation of TKE shows periodic repetition for wavy cylin-
ders as contrast to the uniform distribution of the circular
cylinder. Furthermore, the maximum values of TKE in
spanwise direction for wavy cylinders are all smaller than
that of the circular cylinder. The similar characteristics
are found for the wavy cylinder (WY-B3) at the position
x/Dm = 4 and weaker in strength (see Fig. 12c).

Fig. 13 shows the contours of the normalized TKE in
the y–z plane at the downstream location x/Dm = 2 and 4
for the circular and wavy cylinders. For a circular cylinder,
the TKE contours are nearly parallel to the cylinder axis.
At the positions of x/Dm = 2, the significantly large value
of TKE is in the wake center regime due to active momen-
tum exchange, while decreases gradually along the cross-
wise direction. However, the TKE distributions of the
flow behind wavy cylinders show periodic variations along
the spanwise direction. Moreover, the TKE adjacent to the
saddles are smaller than that at the nodes. Contrast with
the circular cylinder, however, the values of TKE of the
near-wake behind the wavy cylinders are smaller, especially
at the saddles of the wavy cylinders. This indicates that for
the wavy cylinder, the strength of TKE decreases substan-
tially in the near-wake region which is the physical reason
Fig. 14. Iso-surfaces of streamwise vortices (x
for the reduction drag and fluctuating lift on the cylinder.
In general, we can conclude that the flow around a wavy
cylinder shows an evidently periodic characteristic in the
flow pattern along the spanwise direction. This kind of
wavy surface leads to a significant reduction of TKE and
in turn, the reduction the drag and suppression of the fluc-
tuating lift.
3.7. Three-dimensional vortex structures

The iso-surfaces of streamwise vorticity (xx) of the typ-
ical wavy cylinder (WY-B6) are shown in Fig. 14. The vor-
tex structures of the wavy cylinder using a spanwise length
Lz = k in the computational domain are plotted in Fig. 14a,
contrasted to the cylinder with Lz = 2k in the computa-
tional domain in Fig. 14b. All the two figures exhibit
x = ±1) for the wavy cylinder (WY-B6).
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similar periodic patterns along the spanwise direction with
alternating negative and positive vortices and symmetri-
cally distributed with respect to the central axis of the cyl-
inders. Zhang et al. (2005) investigated a wavy cylinder
with k/Dm = 2 at the same Reynolds number using PIV
method also observed this phenomenon. Moreover, the
time history of drag and lift coefficients for these two wavy
cylinder cases are also plotted in Fig. 15 which shows no
distinction between the two cases. Considering the valida-
tion of the periodic boundary condition which we have dis-
cussed in Section 2, referring to Table 3, the consistent
results here confirm that the periodic boundary condition
with only one spanwise wavelength in the computational
domain is also sufficient accurate to simulate flow pass a
wavy cylinder.

Fig. 16 shows the iso-surfaces of crosswise vorticity pat-
terns (xy) for several wavy cylinders at Re = 3000. With a
small value of k/Dm, the patterns of near-wake crosswise
vorticity appear to be well organized and coherent. Increas-
ing k/Dm, this kind of vorticity pattern becomes chaotic.
For example, the near-wake vorticity patterns of wavy
Fig. 16. Iso-surfaces of crosswise vortices (x
models WY-A5 and WY-B5 (k/Dm = 2.818) are similar
to that of the circular cylinder. Furthermore, this periodic
crosswise vorticity patterns are more coherent for larger
values of wave amplitude a/Dm = 1.515 (group WY-B).
That means a larger value of wave steepness a/k can con-
trol and organize the vortex structures. As we discussed
above, a/k plays an important role in separation point
determination. That is to say, the separation point has a
strong relationship with the near wake vortex structures
of the wavy cylinder. It was also confirmed by Zhang
et al. (2005). Moreover, at the optimal range of wavelength
(k/Dm around 1.9), the iso-surfaces of crosswise vorticity
behind the wavy cylinder shows distinctively regimes of
zero vorticity (the recovery region) centered adjacent to
the saddle planes. But no clear zero vorticity patterns can
be found in other ranges of wavelength. The wave ampli-
tude a/Dm affects the size of the zero vorticity regime.
Large value of a/Dm can generate a large zero vorticity
regime behind the wavy cylinder. While for the circular cyl-
inder, no zero vorticity regimes can be observed. All the
results above show that the wave steepness a/k plays an
y = ±1) for wavy and circular cylinders.
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important role in control and organizing the near wake
vortex structures but no effect on the size of the zero vortic-
ity regime behind the wavy cylinder. Refer to Fig. 5b, the
wave steepness a/k shows some relations with the reduction
of fluctuating lift coefficient. A large value of a/k may give
rise to a small value of fluctuating lift coefficient by proper
organizing the near wake vortex structures behind the wavy
cylinders. It is interesting to find that the zero vorticity
regimes of the wavy cylinders are only related to the wave-
length k/Dm. An optimal wavelength can generate a big size
zero vorticity regime. That means the three-dimensional
free shear layer generated from the wave surface is more
difficult to roll up to vortex structure and it rolls up to
Fig. 17. Iso-surfaces of instantaneous vortices magnitude and the span-
wise vorticity patterns in the flow over wavy cylinders compared with a
circular cylinder.
mature vortex at a further downstream position in the cyl-
inder wake. It also means a large value of vortex formation
length which leads to the drag force reduction. Further-
more, the wave amplitude a/Dm always play a role in
enhance the effect of vortex structures control, drag force
reduction and the weakening the fluctuating forces which
cause flow induced vibration (FIV).

The three-dimensional near wake vortex structure and
the spanwise vorticity (xz) in nodal and saddle planes at
optimal wavelength wavy cylinder (WY-B3) is shown in
Fig. 17c compared with that of a circular cylinder. The
structures for other wavy cylinders at the same Reynolds
number are shown in Fig. 17a–d. The distinct difference
in free shear layer development and vortex formation
length are plotted. The spanwise vortex patterns at the
nodal and saddle planes of the wavy cylinders are shed
periodically and alternately with opposite rotation, which
appear as negative vortices in the upper shear layer and
positive vortices in the lower shear layer. Compared with
a circular cylinder, the spanwise vortices contours in both
the nodal and saddle planes of wavy cylinder are noticeably
elongated towards the downstream direction, especially in
group ‘‘WY-B” and with the optimal range of k/Dm around
1.9. Due to the smaller separation angle at the position of
saddle plane, the vortices expand along both the stream-
wise direction and the crosswise direction and the wake
width at the saddle plane is increased giving rise to a wide
wake at the further downstream. However, a large value of
separation angle at the nodal plane suppresses the shear
layer development. The vortices in the nodal plane seem
to be extended only in the streamwise direction and notice-
ably suppressed in the crosswise direction. As a result, it
produces a narrower wake downstream. Thus the flow
structures of near wake have periodic variation along the
spanwise direction of the wavy cylinders. Lam et al.
(2004b) also showed the similar characteristic of a wavy
cylinder at a wide range of Re. At both the nodal and sad-
dle planes of the typical model WY-B3, the periodic vortex
shedding can be found only at the further downstream
position. This explains why the values of fluctuating lift
coefficient are very small at the optimal range of wave-
length k/Dm around 1.9 in the group ‘‘WY-B”. Because
of these complex effects, the three-dimensional vortex sheet
of wavy cylinders rolls up into a mature vortex further
downstream from the cylinder as compared to the circular
cylinder.

4. Conclusions

The turbulent flows past wavy cylinders are simulated
using the large eddy simulation (LES) in the present study.
The three-dimensional near wake vortex structures of wavy
cylinders at Re of 3000 are obtained. Due to the wavy flow
separation line along the spanwise direction of the wavy
cylinders, the wake width expands in the region behind
the saddles of cylinders and shrinks behind the nodes. As
a result, the near wake vortex structures exhibits a periodic
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variation along the spanwise direction. The Strouhal num-
bers for wavy cylinders are still approximately the same as
that of a circular cylinder. That is to say, the vortex shed-
ding of approximately similar frequency still occurred but
the free shear layer is more difficult to roll up and develops
to a mature vortex at a further downstream position by a
longer vortex formation length. Hence, the effects of pres-
sure and pressure fluctuation are less strongly felt by the
cylinder. For such kind of wavy surface with certain critical
values of k/Dm and a/Dm, it can even significantly modify
and control the three-dimensional vortex structures behind
the wavy cylinder. As a result, it also weakens the vortex
strength and increases the base pressure of the cylinder.
The mean drag coefficient and the fluctuating lift force of
wavy cylinders drop sharply with the increase of wave
amplitude a/Dm at an optimal wavelength k/Dm around
1.9. But it has little effect on the values of Strouhal num-
bers compared with a circular cylinder at the same Rey-
nolds number. Furthermore, the vortices are well
organized for a large value of wave steepness (a/k) which
has a strong effect on the fluctuating lift force. All the
results above explained why some cylinders with certain
spanwise waviness and wave amplitude could produce a
significant drag reduction and suppression of the cylinders
vibration.
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